
Purple Mash Computing Scheme of Work Unit 4.1 – Coding – Introduction

Need more support? Contact us

Tel: 0208 203 1781 | Email: support@2simple.com | Twitter: @2simplesoftware

1

mailto:support@2simple.com?subject=Serial%20Mash
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Contents

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

2

Contents
Introduction ... 3

Program Design ... 3

Levels of Scaffolded coding tasks .. 4

Year 6 – Medium Term Plan .. 5

Lessons 1 and 2 - Designing and Writing a More Complex Program ... 6

Aims ... 6

Success criteria .. 6

Resources .. 6

Activities .. 6

Lesson 3 - Introducing Functions ... 8

Aims ... 8

Success criteria .. 8

Resources .. 8

Activities .. 8

Lesson 4 – Using user input ... 11

Aims ... 11

Success criteria .. 11

Resources .. 11

Activities .. 11

Lesson 5 – Flowcharts and Control Simulations .. 13

Aim .. 13

Success criteria .. 13

Resources .. 13

Activities .. 13

Lesson 6 - Using 2Code to make a text-based adventure ... 14

Aim .. 14

Success criteria .. 14

Resources .. 14

Activities .. 14

Appendix 1 - Creating a Displayboard ... 19

Appendix 2 - Approving work on a displayboard... 20

Appendix 3 – The Avatar tool .. 21

Assessment Guidance .. 22

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Introduction

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

3

Introduction
This unit consists of six lessons that assume children have followed the Coding Scheme of Work in Years 1 to

5. If most of the class have not, use the Coding Catch-Up unit instead of this unit.

New coding vocabulary is shown in bold within the lesson plans, use these new words in context to help

children understand the meaning of them and start to build up, their vocabulary of coding words.

The Gorilla guided activities provide further practice of the concepts that the children will be learning and

can be used as extension activities. More able children can be encouraged to explore other things that they

can change in their programs and experiment with the options available, such as variables and ‘if’

statements.

Children will often be able to solve their own problems when they get stuck, either by reading through their

code again or by asking their peers; this models the way that coding work is really done. More able pupils

can be encouraged to support their peers, if necessary, helping them to understand but without doing the

work for them.

Program Design

To master coding skills, children need to have the opportunity to explore program design and put

computational thinking into practice. The lesson plans incorporate designing before coding in some lessons.

Storyboarding their ideas for programs. For example, creating a storyboard when planning a program that
will retell part of a story.

• Creating annotated diagrams. For example, creating an annotated diagram to plan a journey
animation that tells the story of an historical event they have been studying.

• Creating a timeline of events in the program. For example, creating a game program against

the computer, what are all the actions needed from the objects?

• Using the 2Chart tool to create flowcharts of the processes.

During the design process, children should be encouraged to clarify:

• the characters (objects and their properties)

• what they will do (actions and events)

• what order things will happen (the algorithm)

• rate their confidence at being able to code the different parts of their design and either

refine the design or review possible solutions as a class or group.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Introduction

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

4

Levels of Scaffolded coding tasks

You can support children’s learning and understanding by using different degrees of scaffolding when

teaching children to code. The lessons provide many of these levels of scaffolding within them and using

Free Code Chimp, Gibbon and Gorilla enables children to clarify their thinking and practice their skills. These

are not progressive levels, children can benefit from all the levels of activities at whatever coding skill level

they are:

Adapted from work by Jane Waite - Computing at Schools https://www.computingatschool.org.uk/

Scaffolding Task type Examples of how to provide these opportunities

Copying code By giving children examples of code to copy.

Targeted tasks • Read and understand code

• Remix code to achieve a particular outcome.

• Debugging.

• Use printed code snippets so that children can’t run the code but must read
it.

• Include unplugged activities and ‘explaining’ tasks e.g. ‘how do variables
work?’

Shared coding • Sharing Challenge activities as a class or group on the whiteboard.

• Complete guided activity challenges as a class.

• After completing challenges; share methods to create a class version of the
challenge.

• Free coding as a class

Guided

exploration
• Exploring a limited repertoire of commands

• Remixing code

• Explore commands in free code before being taught what they do.

• Use questioning to support children’s learning.

• PRIMM approach; Predict – Run – Investigate – Modify - Make

Project design

and code

Projects (imitate, innovate, invent, remix)

There are different ways to scaffold learning in projects. This process can be
applied to programming projects;

• Using example projects e.g. the Guided 2Code activities.

• Completing the challenges at the end of each guided activity.

• Free code✓

• Create a project that imitates a high-quality exemplar.

• Remixing ideas.

• Independently creating a brand-new program.

Tinkering Use Free code Gorilla to access the full suite of 2Code objects and commands
✓

Use Free code to play and explore freely.

In Literacy, some teachers follow a progression that scaffolds learning to write texts. At first pupils read lots of

examples of the genre of text they are going to create. Then they create an imitation of an example text. Next, they

create a variation of the text (remix and innovate). Finally, they get to inventing a brand-new version.

Most

scaffolded

Least

scaffolded

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.computingatschool.org.uk/

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Medium Term Plan

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

5

Year 6 – Medium Term Plan

Lesson Aims Success Criteria

Lessons 1 & 2 -

Designing and

Writing a

More Complex

Program

• To review good planning skills.

• To design programs using their choice

of objects, attributing specific actions

to each using their new programming

knowledge.

• To use variables within a game to

keep track of the properties of

objects.

• Children can plan a program before coding

to anticipate the variables that will be

required to achieve the desired effect.

• Children can follow through plans to create

the program.

• Children can debug when things do not run

as expected.

Lesson 3 -

Introducing

Functions

• To use functions and understand why

they are useful in 2Code.

• To debug a program and organise the

code into tabs.

• To organise code into functions and

Call functions to eliminate surplus

code in the program.

• Children can explain what functions are and
how they can be created and labelled in
2Code.

• Children can explain how to move code
from one tab to another in 2Code.

• Children can explain how they organised
code in a program into functions to make it
easier to read.

Lesson 4 –

Using user

input

• To explore the options for getting text
input from the user in 2Code.

• How to include interactivity in
programming.

• Children can code programs that take text
input from the user and use this in the
program.

• Children can attribute variables to user
input.

• Children are aware of the need to code for
all possibilities when using user input.

Lesson 5 –

Flowcharts

and Control

Simulations

• To use flowcharts to test and debug a

program.

• To create a simulation of a room in

which devices can be controlled.

• Children can follow flowcharts to create and

debug code.

• Children can create flowcharts for

algorithms using 2Chart.

• Children can be creative with the way they

code to generate novel visual effects.

Lesson 6 -

Using 2Code

to make a

text-based

adventure

• To explore how 2Code can be used to

make a text-based adventure game.

• Children can follow through the code of how

a text adventure can be programmed in

2Code.

• Children can adapt an existing text

adventure to make it unique to their

requirements.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Lessons 1 & 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

6

Lessons 1 and 2 - Designing and Writing a More

Complex Program
Aims

• To review good planning skills.

• To design programs using their choice of objects, attributing specific actions to each using their new

programming knowledge.

• To use variables within a game to keep track of the properties of objects.

Success criteria

• Children can plan a program before coding to anticipate the variables that will be required to achieve the

desired effect.

• Children can follow through plans to create the program.

• Children can debug when things do not run as expected.

Resources

Unless otherwise stated, all resources can be found on the main unit 6.1 page. From here, click on the icon to set

a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and ‘open

in new tab’ so you don’t lose this page.

• Exercise books to be used as 2Code workbooks for recording coding exercises, if desired.

• 2Code Game Planner or Leaflet - Coding Planner this can be set as a 2do or printed for each child/pair.

• Making a Timer and Score Pad guide. This can be set as a 2do for children to refer to or printed.

• Spider Catcher game. This is a game that they will have made in year 5, it is used as an example today.

• Introduction to Tabs video.

• Free code Gorilla found on the main 2Code screen in the Gorilla section.

Activities

• Discuss how the children’s coding skills are becoming more sophisticated and emphasise how important the

planning stage for their programs is becoming as a result. Over two lessons, children will explore good

planning skills using a pro forma and then consider how this helps them create their programs more

efficiently with fewer bugs.

• Put Free Code Gorilla on the board. Review how to add objects (characters) in 2Code by going in to Design

Mode.

• From last year, can children recall using a number variable to create a timer and to control the time left in a

game? Review what they did in the Spider Catcher game.

• The aim for today is to design a game that includes timing and scoring. Can the children suggest any ideas

from a game they might have played? They will need to start with a simple version of the game that they can

then enhance. Remind them that this is called a high level of abstraction.

• Show the children the planning proforma and explain the types of things that should be included in each

section, for example, the characters, the events that will occur and any variables required to keep a track of

things.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y6/computing_sow_y6_unit_6-1
https://www.purplemash.com/site#app/pup/2codeplanner02
https://www.purplemash.com/app/leaflets/coding_planner
https://www.purplemash.com/site#app/2codeanswers/sow_y5_timer
https://www.purplemash.com/app/code/examples/2c_y6lp1
http://www.purplemash.com/mashcontent/applications/code/videos/2codevideos/tabs.mp4
https://www.purplemash.com/app/code/openended/freecodegorilla

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Lessons 1 & 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

7

• If they have been following the Scheme of Work in previous years, they should be able to incorporate some

of the following aspects into their program and refresh their knowledge:

• Characters that respond to being clicked.

• Characters that respond to collisions.

• Using timers to repeat actions.

• Using Repeat Until.

• Using If and If/else statements.

• Using variables (numbers and text).

• Adding a timer and/or score pad to games.

• Adding buttons that take the user to places outside the program.

• Give children time to think about what they want their games to do and plan in detail before they start

coding. Children may want to look over their previous programs to refresh their memory on some aspects if

they have not used 2Code for a while. The Gorilla activities might provide further reminders.

• Before the children start coding, revise the use of tabs, used to keep code organised. Now that the children

are making more complex programs it is important for them to organise their code so that they can

understand what it does, and it makes debugging easier. Show the video Introduction to Tabs video. The

Spider Catcher game also uses tabs.

• If they wish, they can finish their game at home and create a QR code or web link to it. This can be inserted

into a school blog or webpage.

How to Create a QR Code.

• Show the children how they can create a QR code for their program. They can print the QR code for their

books or save the image to be scanned by a QR reader to open the program.

• First, save the file in an online folder (not on the computer), then click on the Share icon at the top of the

screen.

• Next, select Share, then Link and QR code

• The link and QR code can be copied and pasted into documents. Clicking on the QR code will show a large

image that can be saved into the computer (right-click on it, choose Save As. It can then be printed or put

into other documents).

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
http://www.purplemash.com/mashcontent/applications/code/videos/2codevideos/tabs.mp4

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

8

Lesson 3 - Introducing Functions
Aims

• To use functions and understand why they are useful in 2Code.

• To debug a program and organise the code into tabs.

• To organise code into functions and Call functions to eliminate surplus code in the program.

Success criteria

• Children can explain what functions are and how they can be created and labelled in 2Code.

• Children can explain how to move code from one tab to another in 2Code.

• Children can explain how they organised code in a program into functions to make it easier to read.

Resources

• set the Functions guided lesson in Gibbon as a 2do.This is found in the main 2Code area in Tools.

Activities

1. In this lesson we will be learning about functions. Has anyone seen this word in 2Code? They might have

seen it when creating a variable as the type ‘function’ is available as well as text and number.

• Children should work on the FUNCTIONS guided lesson, found in the Gibbon activities section of 2Code.

• This is a brief activity that shows children how to create and call functions.

• Once children have completed this, bring the class back together and open Free Code Gorilla on the

board.

• Add a turtle object, a shape object and a text object.

• Call the turtle object ‘artist’.

• Call the shape ‘red’. Set the number of sides property to 4, the size to 1 and the angle to 45.

• Call the text object ‘btnsquare’, double-click on it and change the text to ‘Square’. Show the children how

to edit the look of the text object using the following properties:

A function is a block of code that you can access when you need it, so you don’t have to rewrite the

same block repeatedly. Instead, you simply Call the function each time you want it.

Possible screenshot

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/codeprinciples/2codefunctions

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

9

• Save the work and switch to code view. Ask the children to guide you in making a function named

Square (they will need to guess the number of steps and then debug this code, if necessary, once they

have tested it). The function needs to be Called for it to run. Call the function when the btnsquare (the

text object) is clicked.

• Save and test the code. The turtle should move in a square shape.

• Can children suggest a way to make the turtle draw the square? As a class, add to the code so that the

turtle puts the pen down before drawing the square and then picks the pen up at the end. Should this

code go in the click event of the button or in the function? It should go in the function if you want it to

happen every time a square is drawn. Either would work for now, but say you wanted to make patterns

where squares were drawn repeatedly, you might just want one pen down and pen up in the flow of the

code.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

10

• Can you now add code so that when the red square is clicked, it changes the pen colour to red?

• Switch to design view and show children how to copy an object by clicking on it and then clicking the

Copy button at the bottom of the property window. This makes a copy on top of the original, they can

drag it to a different location and change its properties instead of creating a new object from scratch.

• Children should now create additional functions and buttons to draw other shapes. They can also add

more colour choices. They could use a separate tab for the colour changes to make their code easier to

read. They could also add arrow buttons to move the turtle between shapes, putting the code for this in

a separate tab as well.

Here are some examples of a possible screen and code for teacher reference.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 6.1 – Coding – Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

11

Lesson 4 – Using user input
Aims

• To explore the options for getting text input from the user in 2Code.

• How to include interactivity in programming.

Success criteria

• Children can code programs that take text input from the user and use this in the program.

• Children can attribute variables to user input.

• Children are aware of the need to code for all possibilities when using user input.

Resources

Unless otherwise stated, all resources can be found on the main unit 6.1 page. From here, click on the icon

to set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link

and ‘open in new tab’ so you don’t lose this page.

• Alien cards – each child/pair will need a copy of the cards, they will need to cut them up into

separate aliens.

• Guess Which Alien partially completed program example, set this as a 2do for the class.

• Create a display board for the class to share their programs to. Details of how to do this are given in

Appendix 1

Activities

1. Can children suggest ways that they can program 2Code to get input from the user of the program?

When the user clicks on an object, when the user presses keys or swipes the screen, the get Input

and Prompt for input commands.

2. Ask the children to spend 5 minutes using 2Code Gorilla to explore the get Input command and the

Prompt for input command.

3. Bring the class back together to see what they have discovered. Some might have made programs

that illustrate what they do. Use their examples to demonstrate or use the following examples:

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y6/computing_sow_y6_unit_6-1
https://www.purplemash.com/app/flashcards/alien_cards
https://www.purplemash.com/app/code/examples/code_example_guess_alien

Purple Mash Computing Scheme of Work – Unit 6.1 – Coding – Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

12

4. Notice how the string is built up in this code. Discuss why the parts , and

are needed.

5. Discuss setting the input to a variable (number or string) and then manipulating it. What happens if

you give a word answer for this last example?

6. Explain that today, children will be making an interactive game using input from the user. Open the

example on the board and show the children the alien cards. Play the game with the alien called

Zinky. Zinky should work but none of the other answers have been programmed yet.

7. Look at the code. Can children read through the existing code, explaining what happens?

8. What do they think the next steps to completing the program are?

• Code for the red alien with 2 eyes

• Code for the other colours of aliens; after colour, the questions do not have to be about

number of eyes, but they do have to be about appearance.

9. Explain that the information about the aliens can be found in 2Investigate (in Tools) in the example

Aliens database. They could use this to add detail and personality to their game.

10. Extension/Alternative: Some children might want to attempt to make a different game using the

same principles but other objects such as bugs or musical instruments. They might want to use

their classmates as objects – stress the need to be polite and considerate in the questioning. You

might prefer them to create some avatar pictures to use instead of actual classmates. They can do

this very easily using the Avatar tool (see Appendix 3 for details).

11. Children should share their finished games to the displayboard (see Appendix 2 for details of how

to do this). Then children can play each other’s games.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 6.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

13

Lesson 5 – Flowcharts and Control Simulations
Aim

• To use flowcharts to test and debug a program.

• To create a simulation of a room in which devices can be controlled.

Success criteria

• Children can follow flowcharts to create and debug code.

• Children can create flowcharts for algorithms using 2Chart.

• Children can be creative with the way they code to generate novel visual effects.

Resources

Unless otherwise stated, all resources can be found on the main unit 6.1 page. From here, click on the icon

to set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link

and ‘open in new tab’ so you don’t lose this page.

• Example program: Billy’s bedroom Simulation. Set this as a 2do

• Billy’s bedroom flowcharts. Set these as a 2do or print a copy for children to refer to.

Activities

1. Open Billy’s bedroom on the board and explain that this is a simulation of his room. There are

several devices that perform actions either automatically or when buttons are clicked.

2. Open the flowchart for Billy’s room and look at the Day/Night chart.

• What should happen?

• What are the pink boxes (these indicate an external procedure runs (you will see the fairy

and rocket procedures elsewhere on the sheet).

• Run the code to see if this works in the code. Day/Night background does work, and the

rocket does work but the fairies do not.

3. Look at the flowchart for the rocking horse:

• What effect is this algorithm designed to achieve? (Rocking, slowing and stopping).

• Does this look correct in the code – how do we test it?

4. Children’s task today is to interpret the flowcharts, debug and get the rest of the devices in Billy’s

room working.

• There are some bugs in the code, so they need to check whether each device works

according to the flowchart and fix it if not.

• There is no flowchart for the car, robot and computer.

• There are some suggested ideas, but children will need to decide what they should do and

how.

• They should create flowcharts in a new 2Chart file.

• They might need to add more objects e.g. there is no remote control for the car, they will

need to add buttons to look like a remote control. They can look at the buttons on the

drawer knobs to get an idea for this.

• There are functions to make the fairies fly, but these do not have any code in them.

They should start with the things that look simplest and then try the harder ones. They could add

more devices and create flowcharts for them if they have time.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y6/computing_sow_y6_unit_6-1
https://www.purplemash.com/app/code/examples/2code_example_billys_bedroom
https://www.purplemash.com/#app/games/2diy/example_flowchart_billys_bedroom

Purple Mash Computing Scheme of Work – Unit 6.1 – Coding – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

14

Lesson 6 - Using 2Code to make a text-based

adventure
Aim

• To explore how 2Code can be used to make a text-based adventure game.

Success criteria

• Children can follow through the code of how a text adventure can be programmed in 2Code.

• Children can adapt an existing text adventure to make it unique to my requirements.

Resources

Unless otherwise stated, all resources can be found on the main unit 6.1 page. From here, click on the icon

to set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link

and ‘open in new tab’ so you don’t lose this page.

• Example Y6 Text Adventure. Set this as a 2do for your class to open.

• Pencils and paper for children to sketch plans and ideas on.

• Text Adventure Functions children might need to refer to these.

Activities

1. What is a text adventure?

Explain that a text adventure is a computer game that uses text instead of graphics. The games

simulate environments in which players use text commands to control characters and influence the

environment. A bit like computer versions of the ‘Choose your own adventure’ books but often with

puzzles to solve.

They were very popular before graphics based games were developed. Despite of the lack of

graphics, they are still fun to play and usually require you to think and solve puzzles. Modern games

like ‘Escape the room’ adventures are very like text adventures but with the addition of visual clues.

Text adventures are also known as ‘Interactive fiction’ where they are more of a story with choices

than puzzles to solve.

2. We are going to begin today by playing a simple text adventure written using 2Code. Then you will

have a chance to change the code to make the adventure your own.

3. To solve this adventure, it is very useful to sketch a map of the places that you go and write some

notes. It will also help you to adapt this adventure yourself.

4. Show children how to open the adventure game and press play to get started. For the sake of

simplicity of programming, answers can only be typed in lower case. Directions should be entered as

n, e, s or w.

5. Give the children some time to play the adventure, see who is first to solve it.

The adventure has only 6 rooms but let children explore freely without clues. Children should go to the room
with the diamond on the floor and take it to the wizard. He gives you the key which you can use to exit the
game.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y6/computing_sow_y6_unit_6-1
https://www.purplemash.com/app/code/examples/2code_example_year6_text_adventure
https://www.purplemash.com/site#app/2codeanswers/sow_y6_text_adventure_functions

Purple Mash Computing Scheme of Work – Unit 6.1 – Coding – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

15

• Once children have had time to play, compare the maps that they have drawn and discuss how

having a map is helpful for solving the game.

• It is useful for everyone to have a simple map when discussing the code. Something like this is

perfect:

• The next stage is to look at the code. Children will be making changes to their code, so it is worth

talking about the need to save their files frequently after testing that they work. It can be easy to

remove some vital code and then not know how to get the code back to how it was before so by

saving correct code after each successful change you can always go back to how it was by

reopening your file. Also, highlight the undo button which appears when you have changed

something so that you can undo; often this will fix the problem.

• In the code, each room has been given a number. Tell the children that you will look through the

code together and try to write the numbers on the map.

• Look at the first 5 lines of the code; this is where various variables are set. Do the names of the

variables provide clues as to what they are for? They should do and it’s the reason that you should

always try to name variables well. Once your coding gets more complex it is very confusing if the

variables are all called things like ‘MyNumber1’ ‘MyNumber2’.

See the following table of variables.

The variables are:

Variable name Type Purpose

haveDiamond
number 0 if the player doesn’t have

the diamond
1 if the player does

haveKey
number 0 if the player doesn’t have

the key
1 if the player does

room
number The number of the room that

the player is in

finished
number 0 if the player has not

escaped
1 if the player has escaped

answer
text This gets set to whatever the

player types in.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 6.1 – Coding – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

16

• Functions: The next lot of code calls functions for each room, these are called roomIs0, roomIs1

etc. The functions are only run when they get called by the main code. Inside each function is the

code that should be run when the player is in this room. This includes the text about where the

doors are and code to test if the player has collected the diamond or has the key etc.

The Text Adventure functions pictures are for your use if you wish to use them. Some children

might find it helpful to have printed versions that they can refer to when changing code.

Here is the example for roomIs1

• Can children use this information to label the rooms on their map with the room numbers? In the

example above the room number is 1 and you can tell from the text that this is the room with

mirrored walls.

• Children’s maps should end up like this:

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 6.1 – Coding – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

17

• Repeat: After the functions is the main code that runs when the program starts. The first line of

this says the following code should keep being repeated until finished = 1. Looking at the variables

above, this means that it continues until the player has escaped.

• This code uses if/else statements to establish which room the player is in and then run the

appropriate function for that room.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 6.1 – Coding – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

18

• Conclusion: This is the code that runs when finished = 1. This is when the player has escaped and

finished the adventure. Can children explain what this does?

• Ask children to change the room descriptions to their own ideas and then play the game again. How

much can they make the game feel different just by changing the text?

NOTE: Sometimes when text is changed, there is a bug which reverts the text to what it was

before when they go to change another part of the code. If this happens, children should drag

another command below the existing one, enter the new text and then

delete the original text by dragging it to the trash bin in the bottom right of the screen.

• The diamond, wizard and key could become something else. Perhaps the player is Alice lost in

Wonderland and she needs to give the wizard something, so he can give her a shrinking potion?

Perhaps the player is a master spy who needs to find a vital clue and report it back to the

wizard\Q\Prime Minister?

• Play the resulting games as a class and enjoy!

• Extension

In Unit 6.5 children will have the opportunity to change the rooms in this adventure. Some children

might be eager to try this out now. Encourage them to map out their rooms and start with small

changes then build upon them. Save working code often so that if it all goes wrong, they don’t lose

everything.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Unit 6.1 – Coding – Appendix 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

19

Appendix 1 - Creating a Displayboard

For detailed information about Purple Mash Displayboards, see the User Guide in the Teachers>User

Guides section of Purple Mash. These instructions tell you only the steps needed for the displayboard this

unit of work

Click on the Admin tab and select the icon to access the Display Boards control panel.

You will see a list of the existing boards. If this is your first board the list will be empty.

Under Available Boards click the icon and choose a name for your board.

You can optionally add a description for the board and choose an icon to represent your board.

Tick the Hide Info boxes if children access Purple Mash at home and you do not want names viewable.

Do not tick any of the Access tick boxes.

In the bottom section, locate your class by clicking on the arrow next to the Classes folder and ticking the

box by the class name.

Click the Save button at the bottom of the screen to save your board.

You're done! Your board is ready to receive new projects from pupils.

NB You will only be able to add classes if you are the allocated teacher for that class.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/guides/Displayboards_pdf_Guide
https://www.purplemash.com/site#tab/Teachers/guides_and_resources
https://www.purplemash.com/site#tab/Teachers/guides_and_resources

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Appendix 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

20

Appendix 2 - Approving work on a displayboard
For detailed information about Purple Mash Displayboards, see the User Guide in the Teachers>User Guides

section of Purple Mash. The steps below assume that you are going to bulk approve all entries on the

displayboard as part of lesson 4.

Open the displayboard from the home screen by clicking on the Sharing tab and then on the

displayboard.

Turn on editing by clicking the slider. Then select ‘unapproved items’ from the drop-down list.

Click on the first item on the page, click and hold down, the Shift key, then click on the last item on the page.

Then click the icon to approve selected projects.

If there are more pages (grey arrow on the right), go to these and approve the work in the same way.

To return to the Display Board main screen, click the icon.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/guides/Displayboards_pdf_Guide
https://www.purplemash.com/site#tab/Teachers/guides_and_resources
https://www.purplemash.com/site#tab/Teachers/guides_and_resources

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Appendix 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

21

Appendix 3 – The Avatar tool
Purple Mash Avatar creator; this is opened by clicking on the user portrait near the top right of the screen next

to the Logout button.

1. Click on the image (which will just be a grey outline image if an avatar has not yet been created).

2. Create an avatar or click the Random button to make a random avatar; this is a quick way to make several

different avatars.

3. Click the download button to save an image file of this avatar to your device. Create enough of these to

use in your game. The Aliens version has 20 aliens.

4. To make game cards, print the image files to the desired size.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

22

Assessment Guidance
The unit overview for year 6 contains details of national curricula mapped to the Purple Mash Units. The

following information is an exemplar of what a child at an expected level would be able to demonstrate when

completing this unit with additional exemplars to demonstrate how this would vary for a child with emerging or

exceeding achievements.

Assessment Guidance

Emerging
Children are beginning to be able to turn a more complex programming task into an algorithm
by identifying the important aspects of the task (abstraction) and then decomposing them in a
logical way with support (lessons 1/2 & 5).

They can then use this design to write a program using 2Code.

Pupils understand sequence, selection and repetition in programs and can use them in their
simplest forms. They will require support when combing these aspects e.g. using selection
within a repeat in a game (lesson 1/2 and lesson 6).

With support, children can plan, design and create a simple program that includes a single
variable relating to timing. They can also include a button which will launch another program
(Unit 6.1 Lesson 1 and 2).

They will usually require support to make use of variables and manipulate variables in their
code and in understanding the way that functions are beneficial (lesson 1/2, lesson 3 & lesson
6).

As their coding becomes more complex, they will require support to tackle debugging in a
logical rather than a trial-and-error method.

Children can make good attempts to ‘read’ code and predict what will happen in a program
(lessons 3 & 5). They can usually interpret a program in parts but will need support to put the
separate parts of a complex algorithm or program together to explain the program as a whole
(lesson 6).

Expected
Children are beginning to be able to turn a more complex programming task into an algorithm
by identifying the important aspects of the task (abstraction) and then decomposing them in a
logical way using their knowledge of possible coding structures and applying skills from
previous programs.

They can then use this design to write a program using 2Code (lessons 1/2, 3 & 5).

Children can translate algorithms that include sequence, selection and repetition into code
and their own designs show that they are thinking of how to accomplish the set task in code
utilizing such structures including nesting structures within each other (lesson 1/2 and lesson
6).

Children can plan, design and create a program that includes variables relating to timing and
scoring along with buttons which launch other programs (Unit 6.1 Lesson 1 and 2).
Furthermore, children will consider how to organise their code using multiple tabs (Unit 6.1
Lesson 2).

They use functions within their code to eradicate unnecessary code such as shape creation
(Unit 6.1 Lesson 3).

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 6.1 – Coding – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

23

Assessment Guidance

Their coding displays an understanding of the function of variables in coding (lesson 1/2 and
lesson 6), outputs such as sound and movement (lesson 1/2), inputs from the user of the
program such as button clicks (lessons 3, 4 & 5) and the value of Functions (lesson 3).

Children can make good attempts to ‘read’ code and predict what will happen in a program
(lessons 3 & 5). They can usually interpret a program in parts and can make logical attempts
to put the separate parts of a complex algorithm or program together to explain the program
as a whole (lesson 6).

Children test and debug their program as they go and can use logical methods to identify the
approximate cause of any bugs but might need support to identify the specific line of code
that is causing the problem as the complexity of the programs increases. They try to improve
and debug their own programs (all lessons).

Within their programs, they can use features such as interactivity with the end users with the
desired effect of adding greater impact. (Unit 6.1. Lesson 4).

Most children demonstrate a secure understanding of the impact of changing the position of
instructions within 2Code. With this knowledge, they can demonstrate use of the tabs feature
to carefully section code for the intention of easier debugging and less code error, as their
coding becomes more complex. They know that instructions can be shortened by using the
‘function’ feature and are aware of the impact on their desired outcomes if they haven’t
thought this through fully (Unit 6.1 Lesson 3).

Exceeding
Children can turn a more complex programming task into an algorithm by identifying the
important aspects of the task (abstraction) and then decomposing them in a logical way using
their knowledge of possible coding structures and applying skills from previous programs.
They can then use this design to write a program using 2Code (lessons 1/2). Children’s design
shows that they are thinking both, of the required task, and of how to accomplish this in code.
Children test and debug their program as they go and can use logical methods to identify the
approximate cause of any bugs then test systematically to identify the specific line of code
that is causing the problem.

Pupils intuitively grasp the concepts of selection, repetition and variables and make use of the
various commands to use input from users and produce output including sound and
movement. Pupils like to challenge themselves to combine these with other coding structures
to achieve the effects that they design to personalise and to improve their programs (lesson
1/2 and lesson 6). They are also thinking about good structure to their code with a view to
debugging such as the use of tabs and functions to organise code and the naming of variables
(lessons 1/2 & 3).

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

